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Objective: In this unit students will learn about how data assimilation may be used to determine
the initial state of the atmosphere for meteorological modeling. Data assimilation remains under
development for air quality modeling. Sensitivity analysis is closely related to data assimilation
and students will learn about some basic concepts in sensitivity analysis. Students will perform
some simple numerical experiments using brute force sensitivity analysis with the model of their
choice.

Data Assimilation

A accurate representation of the initial three-dimensional meteorological state is a necessary
starting point for a meteorological forecast. An air quality forecast requires the initial chemical
state of the atmosphere as well. Time and spatially dependent boundary conditions at the top
and lateral sides of the model need to be determined. Boundary conditions may be supplied from
measurements or larger scale simulations, for example, a combination of global and stratospheric
models could be used to supply boundary conditions for a regional scale model.

Data assimilation is used routinely for determining initial conditions for meteorological models.
Daley (1991), Kalnay (2002), Lewis et al. (2006) and Sandu and Chai (2011) present reviews of
several established methods for the assimilation of meteorological data. Objective analysis or
spatial analysis was one of the first methods used to estimate meteorological fields for modeling
(McRae et al. 1982). Methods of spatial analysis include optimum interpolation (Ol) and 3-
dimensional variational analysis (3DVAR). 3DVAR may be formulated in Bayesian terms (Lewis et
al., 2006). Ol and 3DVAR do not account explicitly for atmospheric dynamics so the produced
meteorological fields are not necessarily consistent with the atmosphere’s continuity equations
of motion. However, the expectation is that the meteorological fields produced by spatial analysis
will combine optimally forecast and observation error covariance.

A data assimilation method that produces meteorological fields consistent with those employed
by a meteorological model is 4-dimensional variational assimilation (4DVAR; Lewis et al., 2006).
The 4DVAR method uses a meteorological model as its forward operator. 4DVAR uses
observational data and the model to estimate meteorological fields over an interval. These fields
can then be used as the initial conditions to make a forecast. In this case, the initial fields
produced by 4DVAR will be consistent with the model’s dynamics. An understanding of
measurement errors and those in the models (known as representativeness errors) is needed in
the development of data assimilation methods. However, forecast errors are predicted implicitly
in 4ADVAR and not explicitly. The extent that the model’s dynamics is used as a constraint on the
assimilation process is not fixed, rather it may be weak or strong depending on what is the
appropriate degree of forcing in a particular application.



Adjoint models are used in 4DVAR and the main function of the adjoint model is to make a
connection between the numerical model variables and the observed quantities. Adjoint models
provide a first-order approximation to sensitivity in a nonlinear model (AMS, 2012a). An adjoint
model is a model consisting of adjoint equations that map a sensitivity gradient vector from time
t1 backward to a previous time to. The time to would correspond to the initial time for a forecast.
An adjoint version of a meteorological forecast model could be applied to make simulations while
varying the initial state until differences between the adjoint simulations and observations are
minimized.

There exist ensemble approaches to meteorological forecasting and data assimilation. An
ensemble of forecasts may be made with one or several models and with the models having
different initial conditions, boundary conditions or other model run parameter settings (AMS,
2012b). Ensemble approaches may be used to mitigate uncertainties in the preparation of the
initial state for a forecast. It is assumed that the mean of many simulations, made with reasonable
initial conditions and model setup, will be more accurate than a single forecast made with only
one set initial conditions. Ensemble forecasts are especially useful if there are some input fields
or model properties with a high degree of uncertainty that strongly affect the forecast. In any
case, ensemble forecasts provide directly a measure of forecast uncertainty (Kalnay, 2002).

Ensemble Kalman filtering is one of the more advanced assimilation approaches. Kalman filtering
is a sequential procedure that may be applied to ensemble approaches. Kalman filtering works
well with ensemble approaches because it utilizes explicit predictions of forecast errors (Lewis et
al.,, 2006). An ensemble Kalman filter consists of the 3DVAR method and an appropriately
generated ensemble. Kalman filtering uses an ensemble forecast to deduce forecast error
covariances and uses these to assimilate data from a given time. One of the most important
advantages of Kalman filtering is that it avoids the necessity of creating a tangent linear model
and an adjoint model of the forecasting meteorological model.

Ideally, initial and boundary conditions (and data assimilation) should be developed from high
resolution 3-D meteorological measurements. Satellites, sondes and ground-based
meteorological profilers help in providing this data, but an extensive data is seldom available and
only during special research studies for limited areas. This makes meteorological data
assimilation a very underdetermined problem from a mathematical point of view. Observing
Systems Simulations Experiments (OSSEs; Arnold and Dey, 1986, Lord et al., 1997, Baker et al.,
1995) can be used to create simulated datasets for the development of improved data
assimilation methods and observing systems.

Data assimilation is not widely used for air quality modeling due to the much larger number of
variables than required for meteorological modeling. There are a very number of chemical
species concentrations that need to be represented by 3-D fields. The concentrations of the
chemical species are subject to strong, highly nonlinear coupling. Finally, there are no observing
systems that provide the necessary complex chemical measurements in 3-D. However, 4DVAR
has been investigated for use with air quality models. For example, an adjoint module for a
complex chemical scheme (Stockwell et al., 1990) was developed (Elbern et al., 1997) and this



module was incorporated into a full D-d air quality model by linking the chemical adjoint module
with the adjoint dynamical component of an air quality model (Elbern et al., 1997; Elbern and
Schmidt, 1999). They showed that 4DVAR may be a feasible method for air quality modeling.
Today it is typical that the air quality model is initialized with idealized profiles based on field
measurements and “best guesses”. The model spins-up to find its own initial state by simulating
a few days before the forecast period. The results of the spin-up period are discarded.

Sensitivity and Uncertainty Analysis

Although there are many different kinds of sensitivity analysis techniques that may be applied to
meteorological and air quality modeling, most can be grouped into local sensitivity analysis and
global analysis methods. For example, first-order ozone local sensitivity analysis coefficients give
the response of chemical concentrations, such as ozone, to a model parameter (such as a rate
coefficient, emission rate or meteorological input). They are local in the sense that they are valid
incrementally near nominal input and parameter conditions. Local sensitivity analysis methods
involve finding the response of a simulated quantity with respect to a parameter change. For
example, a local, first order sensitivity analysis could be used to find the change in an ozone
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Sensitivity coefficients may be estimated by varying model inputs and parameters one-by-one
and this method is known as “brute force”. Brute force methods may provide useful insight into
the effect of uncertainties such as those in emissions inventories (Fujita et al., 2016). However,
the brute force method does not provide the more comprehensive analysis that can be achieved
by local and global sensitivity analysis combined with uncertainty analysis (Gao et al.,1995; Yang
et al., 1995; Russell et al., 1995; Saltelli et al.; 2005). Although brute force methods can be used
dlos]
dEvoc
force methods require at least two simulations with a small (incremental) parameter variations
for each sensitivity coefficient evaluated. The accuracy of brute force methods is a concern
because the size of the parameter variations must be large enough so that differences between
the simulated values are large enough to avoid numerical noise limits while small enough to avoid
the nonlinearities involved with chemistry. Another serious problem is that a complete sensitivity
analysis by brute force methods requires a very large number of simulations. The decoupled
direct method (DDM; Dunker 1984) allows sensitivities to be calculated directly without the need
of performing multiple simulations. The set of differential equations for an air quality model that
include sensitivity differential equations is very stiff and therefore very difficult to solve
numerically, the decoupled direct method (DDM) and its extension, the high-order decoupled
direct methods (HDDM) allow these differential equations to be solved.

to estimate quantities, such as , they are very computationally inefficient because brute

A normalized sensitivity coefficient for chemical species X to the it" rate coefficient, Sx i, is given

by the following equation where [k;] is the nominal value of the it" rate coefficient, [X(t)] is the
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concentration, [X(t)], with respect to the rate coefficient ki.



—

N L(C)

[X] dk;

For example, the normalized sensitivity coefficients for the production of ozone and hydrogen
peroxide are given by the following equations.
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Figure 1 shows an example of a time series of normalized sensitivity coefficients for the
production of hydrogen peroxide to the rate coefficients for the reactions: CH3CH-(OH)-CH20, +
NO - Products; HCHO + hv = 2 HO;, + CO; Toluene + HO - Products; HO; + NO = Products
and NO; + HO - HNOs. Note that CH3CH-(OH)-CH,0 is an organic peroxy radical produced from
alkenes.

CH3CH-(OH)-CH,0, + NO = Products
HCHO + hv = 2 HO, + CO
2F =] Toluene +HO - Products
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Figure 1. Selected normalized sensitivity coefficients for hydrogen peroxide concentrations
with respect to rate coefficients as described in Stockwell (1986).

Note that the normalized sensitivity coefficients are time dependent; some increase while others
decrease with time. If a sensitivity coefficient increases with time that rate coefficient value
become more important in determining the final concentration of a substance.

High-order sensitivity analysis coefficients extend local methods to provide measures of the
response of ozone concentrations over a wider range of conditions but within some limits. Local
sensitivity methods have been extended to the higher-order HDDM for the analysis of Oz due to
its complex nonlinear chemical formation processes and have been used successfully to evaluate
the effectiveness of control measures and quantify O3 formation potential (Hakami et al., 2003;
Cohan et al.,2005; Kim et al., 2009, Itahashi et al., 2013). Sensitivities may be calculated for higher
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of emission changes over which the sensitivity coefficients apply and coefficients such as
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calculated. Codes for the calculation of these HDDM coefficeints, similar to DDM, have be
developed (Hakami et al., 2003; Byun and Schere, 2006) and it have been incorporated in to
CMAQ (Byun and Schere, 2006).

order derivatives, such as . These higher order derivatives extend the range

allow cross terms between the VOC emissions and the NOx emissions, Enox to be

Global sensitivity methods provide insight into the effects of parameter variations on model
simulations over a wider variety of conditions than local sensitivity analysis (Gao et al., 1995;
Russel et al., 1985). Global sensitivity methods usually involve Monte Carlo methods where
model input parameters are generated randomly within a range of physically possible values and
the uncertainty range in conditions (Russell et al., 1995). Cumulative frequency diagrams or
tables that show the relative probability of simulation outcomes may be constructed from Monte
Carlo selected simulations. Figure 2 shows an example of cumulative frequency diagram for
ozone control strategy based on a 25% reduction in initial concentrations of volatile organic
compound emissions. A global sensitivity analysis made with a full set of Monte Carlo simulations
can be considered as a very large ensemble simulation. A full set of Monte Carlo would be much
too expensive in terms of computational cost so it must be constrained. Latin Hypercube
Sampling (McKay et al., 1979) is often used to reduce the number of simulations while still
sampling a representative set of input parameters. This method has been have used in air quality
studies such as Gao et al. (1995) and Russell et al. (1995).
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Figure 2. An example of a cumulative frequency diagram for ozone derived from a set of Monte
Carlo simulations made with Latin hypercube sampling (Gao et al., 1995). This figure
shows the probability of a fractional reduction in ozone due to a 25% reduction in
initial concentrations of volatile organic compound emissions. The blue arrow shows
the median expected ozone reduction for the proposed control strategy.
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Exercises

Perform a sample local sensitivity study. Chose one of your models, chemical box, 1-D, Quick TUV,
etc. Choose a base case and simulate it. Make additional simulations while varying the model
parameters by some small amount (£5%). Use the results to calculate sensitivity coefficients S =
AO /Ap where A0 is the change in an observable and Ap is the change in a model parameter or
input variable. What are the highest local sensitivity coefficients you find?

Can you normalize your local sensitivity coefficients as discussed above? If you can, please do,
and compare the normalized sensitivity coefficients. What are the highest normalized local
sensitivity coefficients now?

You might try investigating the effect of varying the magnitude of parameter variations on
sensitivity coefficients. Try changing the parameters by 10%, 20% and 50%. Use the new
simulations to determine the effect on your recalculated sensitivity coefficients.

Do your calculations have any implications for measurement systems / Observing Systems
Simulations Experiments (OSSEs)?



