
Howard University PBL Workshop
Computational Warmup Exercises
This set of exercises is by no means meant to be comprehensive of
the techniques that you might need to accomplish the work during
the workshop but if you are comfortable with these exercises
(please do them to find out!) then you have a good starting level of
computational skills. This document is prepared in Mathematica so
you can work on doing the same things in your own computational
language like Python, Matlab or R. If, by chance, you are using
Mathematica you cannot just copy the statements here. I expect you
to be able to explain how each of these statements operates and to
come up with your own versions.

Exercise 1 (HDF file import and data manipulation).
The datafile in question is processed from a Multi - Filter Rotating Shadowband Radiometer (MFRSR)
which measures radiant energy in 7 spectral bands only 5 of which are used here) permitting calcula-
tions of various quantities including aerosol and cloud optical depths. For this datafile, the tasks in
order are :
1) assess the various data structures in the HDF file
2) import the aerosol/cloud optical thicknesses measured at 414, 500, 614, 673 and 869 nm
3) use the cloud mask to select just the aerosol optical depths
4) plot up the AODs with a legend to distinguish the plots
5) compute the Ångström coefficient between the 414 and 869 nm wavelengths

First assess the data structure. Since this is an hdf5 file format it is “self-
describing”. In other words you can interrogate the file to figure out what’s in it
and you don’t have to worry about formatting issues as in an ASCII file such as
in Exercise 2. The statement below tells what datasets are contained within the

file. To retrieve this file, go to https://dnwsite.weebly.com/current-
measurements.html and look for the Google Drive link in the MFRSR section
called “Retrievals”. Drill down through that and find the folder called
Retrievals677 where you will find the file.

SetDirectory[

"C:\\Users\\Dave\\Google Drive\\MFRSRProcessed\\SN677\\BVNorthBldg\\Retrievals677\\"];

Out[34]= C:\Users\Dave\Google Drive\MFRSRProcessed\SN677\BVNorthBldg\Retrievals677

In[35]:= Import[MFRFile = "Ret_677_20200227v0.9.h5"]

Out[35]= {/CloudFlag, /SfcPress, /ElevAngles, /IPW, /O3OD, /DerivedO3OD,

/MFRVolts, /MFRTime, /OptAirMass, /ROD, /MeanLogV0TOA, /AOD}

To perform the exercise, we will need the Time, Voltage, CloudFlag and AOD
fields which are very simply read due to the hdf file structure.

In[16]:= {MFRTime, MFRVolts, OD, CloudFlag} =

Import[MFRFile, {"Datasets", {"MFRTime", "MFRVolts", "AOD", "CloudFlag"}}];

A look at the structure of these datasets indicates that there are 578 temporal
samples in the dataset. There are 5 channels of raw voltage data, 5 channels of
derived optical depths which includes both clear and cloudy measurements,
and a CloudFlag for distinguishing the clear and cloudy cases.

In[17]:= Dimensions /@ {MFRTime, MFRVolts, OD, CloudFlag}

Out[17]= {{578}, {5, 578}, {5, 578}, {578}}

2 PBL2020WarmUpExercises.nb

First look at the raw measurements. The clear parts of the day yield smooth
curves while the cloudy parts show large variation.

In[18]:= ListPlot[MFRVolts, PlotLegends → {"414nm", "500nm", "614nm", "674nm", "869nm"},

PlotRange → All, Joined → True]

Out[18]=

100 200 300 400 500

500

1000

1500

2000

414nm

500nm

614nm

674nm

869nm

Now look at the CloudFlag where a 1 indicates cloud, 0 indicates clear
(Alexandrov et al., 2004).

In[19]:= ListPlot[CloudFlag]

Out[19]=

100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

Look at the optical depths, OD, which is a combination of both clear and cloudy

PBL2020WarmUpExercises.nb 3

measurements. You can see, by correlating the plots above and below that
where the CloudFlag is 0, low ODs, consistent with aerosols exist.

In[20]:= ListPlot[OD, Joined → True, PlotRange → All]

Out[20]=

100 200 300 400 500

1

2

3

4

Now use the elements where CloudFlag=0 to select the clear cases thus
obtaining just the aerosol optical depths and plot them up as a function of
time. Your plot should look something like the one below. Note that the time
field in the MFR files is days since 1900.

In[21]:= AODs = Transpose[#] & /@ Drop[#, 1] & /@ Transpose[#] & /@

Select[#, #[[1]] ⩵ 0 &] & /@ Transpose[{CloudFlag, MFRTime, #}] & /@ OD;

4 PBL2020WarmUpExercises.nb

In[22]:= ListPlot[AODs, BaseStyle → {14, FontFamily → "Helvetica"},

Frame → True, FrameLabel → {"Time (days since 1900)", "Optical Depth"},

PlotLegends → {"414nm", "500nm", "614nm", "674nm", "869nm"}, GridLines → Automatic]

Out[22]=

43887.8 43887.8 43887.8 43887.9
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Time (days since 1900)

O
pt
ic
al
D
ep
th

414nm

500nm

614nm

674nm

869nm

Use a time function to determine what day the data were taken

In[23]:= DateObject[{1900, 1, 0}] + 43 887 days

Out[23]= Day: Thu 27 Feb 2020

Competition!! Which language is more efficient for coding this up - Python,
Matlab, R, Mathematica??

Below is the Mathematica code from above needed to read in the data, package
into cloud - cleared AOD and plot up versus time. Do your best to reproduce
something similar and THEN count the number of characters needed for your
code.

Since we have so many Python coders ... who can write the most efficient Python

example? Low total number of characters wins bragging rights!

For comparison, the first version of code below requires 250 characters. The
second version requires 127 characters.

{MFRTime, MFRVolts, OD, CloudFlag} = Import["Ret_677_20200227v0.9.h5",

{"Datasets", {"MFRTime", "MFRVolts", "AOD", "CloudFlag"}}];

PBL2020WarmUpExercises.nb 5

In[25]:= AODs = Transpose[#] & /@ Drop[#, 1] & /@ Transpose[#] & /@

Select[#, #[[1]] ⩵ 0 &] & /@ Transpose[{CloudFlag, MFRTime, #}] & /@ OD;

In[26]:= ListPlot[AODs]

Out[26]=

43887.8 43887.8 43887.8 43887.9

0.02

0.04

0.06

0.08

0.10

0.12

0.14

In[42]:= 119 + 117 + 14

Out[42]= 250

Following some ideas of Iyasu from UTEP, this code avoids naming the
datasets, etc and uses 127 characters

In[52]:= i1 = Import["Ret_677_20200227v0.9.h5", "Data"];

In[53]:= ListPlot# & /@ Drop[#, 1] & /@

# & /@ Select[#, #[[1]] ⩵ 0 &] & /@ {i1[[1]], i1[[8]], #} & /@ i1[[12]]

Out[53]=

43887.8 43887.8 43887.8 43887.9

0.02

0.04

0.06

0.08

0.10

0.12

0.14

6 PBL2020WarmUpExercises.nb

In[54]:= 44 + 83

Out[54]= 127

Back to the main thread and the Ångström exponent ...

The Ångström exponent provides information about how particles scatter light
as a function of wavelength. The exponent is strongly inversely correlated with
particle size with smaller Ångström exponents being correlated with larger
effective radius. The exponent, α, is derived from the relationship

τa

τb
= λa

λb

α

where τx is the aerosol optical thickness at wavelength λx.

In[]:= Clear[a, b, α]; Solve
τa

τb
⩵

λa

λb

-α

, α

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution

information.

Out[]= α → -
Log τa

τb


Log λa

λb



Enrichment Excursion (i.e read this part to learn more about the conditions
under which the Ångström formula is valid ...)

The use of the function Solve above makes assumptions about the kind of
solution you want, but Mathematica also indicates that there are other
conditions implied in the solution with the warning statement of "Inverse
functions are being used ...". To find those other conditions, use the function
Reduce as suggested

In[]:= Reduce
τa

τb
⩵

λa

λb

-α

, α, Reals

PBL2020WarmUpExercises.nb 7

Out[]= λb ≠ 0 && τb ≠ 0 && λa ⩵ 0 && τa ⩵ 0 && α < 0 ||

1 ∈ ℤ && τb < 0 || τb > 0 && λa < 0 && λb > 0 || λa > 0 && λb < 0 &&

τa ⩵
λa

λb

1

τb && α ⩵ -1 || 1 ∈ ℤ && 1 ≥ 1 && τb < 0 || τb > 0 &&

λa < 0 && λb > 0 || λa > 0 && λb < 0 && τa ⩵
λa

λb

1

τb && α ⩵ -1 ||

λa ≠ 0 && τa ≠ 0 && λb ⩵ λa && τb ⩵ τa || Log
λa

λb
 ≠ 0 &&

λa < 0 && λb < 0 && τa < 0 && τb < 0 && α ⩵
Log τb

τa


Log λa

λb


|| τa > 0 && τb > 0 && α ⩵
Log τb

τa


Log λa

λb


||

λa > 0 && λb > 0 && τa < 0 && τb < 0 && α ⩵
Log τb

τa


Log λa

λb


|| τa > 0 && τb > 0 && α ⩵
Log τb

τa


Log λa

λb


What does this mean? Let' s parse the conditions above realizing that

Log - natural log
&& - logical “AND”
|| - logical “OR”
ϵ - is an element of
ℤ - the set of integers

Parsing the various options, the condition that pertains to the physical
situation of our measurement is

Log λa
λb
 ≠ 0 && (λa > 0 && λb > 0 &&τa > 0 && τb > 0 && α ⩵

Log τb
τa


Log λa
λb



Returning to the main thread, evaluate now the Ångström exponent between
414 nm and 869 nm, realizing that all 5 AODs are packed in the variable called
AODs with the values at 414 and 869 nm being the 1st and 5th of those,
respectively.

In[]:= Ang414869 = -
LogTranspose[AODs[[1]]][[2]]  Transpose[AODs[[5]]][[2]]

Log414  869
;

8 PBL2020WarmUpExercises.nb

In[]:= ListPlot[Ang414869]

Out[]=

50 100 150 200 250

0.5

1.0

1.5

2.0

PBL2020WarmUpExercises.nb 9

For comparison, figure 7 from Veselovskii et al., 2009 shows a correlation
between Ångström exponent and particle effective radius retrieved from a
multi-wavelength Raman lidar operating at NASA/GSFC in 2006. Based on this
plot we would infer that the effective radius of the particles present on
February 27, 2020 were increasing in effective radius during the measurement
period from approximately 0.15 μm to 0.3 μm.

In[]:=

Exercise 2 (ASCII and netCDF radiosonde data file import
and manipulation).

Here we will work with datafiles from two different radiosonde packages launched on the same bal-
loon. These "dual launches" have been occurring on an approximately weekly basis at HU Beltsville
since 2016.

10 PBL2020WarmUpExercises.nb

For these datafiles, the tasks in order are :
1) view the ascii files to discern the formats
2) import the data
3) compare some measurements between the RS92 and RS41
4) calculate water vapor mixing ratio using the Hyland Wexler, 1983 definition of saturation vapor
pressure
5) compare some measurements between the RS92 and the GRUAN-processed RS92

We will work with sonde files acquired on January 23, 2020. On this day, there was a multi - sonde
launch that included Vaisala RS92, Vaisala RS41 and Cryogenic Frostpoint Hygrometer (CFH). Those in
the instrumentation track should learn more about these packages during the workshop.

To see what files are available at Beltsville from this launch, you can consult the spreadsheet that is
automatically maintained that keeps track of the matchups. Go to the workshop website and switch to
the “current measurements” tab and look for the set of “Dropbox Folders”. Click on the one for “So-
ndes” and then switch to the SondePlots folder. In this folder you can find the file “MultiLaunchSondes_-
1MostRecent.xls”. Consulting that spreadsheet indicates that the filenames of the data available from
January 23, 2020 are:

1) RS41 file: HUBV_RS41SGP_20200123_064641UT.mw41.dat
2) RS92 file: ALVICE_RS92SGP_20200123_064640UT.mw41.dat
3) CFH file: CFH_20200123_0646.bv064fle.dat
4) GRUAN processed RS92: BEL-RS-01_2_RS92-GDP_002_20200123T064600_1-003-001.nc

The 3rd file is from a Cryogenic Frostpoint Hygrometer that is launched monthly at Beltsville as part of
the international GRUAN effort. It is a very interesting instrument but we will ignore it for this exercise.
The 4th of these files is a reprocessing of the RS92 data done by the GRUAN lead center in Lindenberg,
Germany based on corrections developed by Miloshevich et al., 2006, 2009. We will now work on files 1,
2 and 4 above. These files are located in folders called RS41, RS92 etc in the same dropbox.

PBL2020WarmUpExercises.nb 11

Unlike the hdf file used in Exercise 1, most of these files are in ASCII format. The
good news is that you can just open up an ASCII file in a text editor and have a
look at it. The bad news is that there is no standard way to format ASCII files so
each file type requires some different coding to read it in. To get started with
figuring out how to read an ASCII file, you have to look at the files. So let’s have
a look...

In[]:= fileRS41 =

"F:\\Dropbox\\Data\\Processed\\BVSondes\\RS41\\HUBV_RS41SGP_20200123_064641UT.mw41.dat";

fileRS92 =

"F:\\Dropbox\\Data\\Processed\\BVSondes\\RS92\\ALVICE_RS92SGP_20200123_064640UT.mw41.

dat";

fileGRUAN =

"F:\\Dropbox\\Data\\Processed\\BVSondes\\GRUAN\\BEL-RS-01_2_RS92-GDP_002_20200123

T064600_1-003-001.nc";

12 PBL2020WarmUpExercises.nb

Have a look at the first part of the RS41 file which indicates that there are 40
header lines. You may prefer to do this in a separate program like notepad in
windows. The header supplies useful information about the instrument, the
launch location, etc. The descriptions of all the data columns are found after
the line stating “Variable Unit”.

In[]:= TableForm[Take[Import[fileRS41], 50], TableSpacing → {0, 0.5}]

Out[]//TableForm=

Generated by Rfunction: Get.mw41.edt.func2
============> Radisonde_info:
RS_type: RS41-SGP
RS_config: -32 768
RS_serialnum: R3340183
RS_freq: 403
RS__windtype: ccGPS
=============> Station_info:
Station: HUBV_RS41SGP
Latitude: 39.0563
Longitude: -76.8755
Altitude: 52.3
SW version: MW41 2.15.0
Start time: 2020-01-23 06:46:41
=============> Variables & units - Vaisala EDT
NA_numeric value: -9999
NA_string: xx or NA

Variable Unit
time sec
xx NA
Ta K
RH %
v(S->N) m/s
u(E->W) m/s
Height m
press hPa
Td K
MR g/Kg
DD dgr
FF m/s
Ascend_FLG (0-N,1-Y)
xx NA
xx NA
Lon dgr
Lat dgr
xx NA
xx NA
xx NA
=============> Data:
0. -9999. 268.37 85. 0. 0. 52.3
0.81 -9999. 268.46 83.38 0.46 0.86 54.5
1.81 -9999. 268.74 81.17 0.73 1.29 59.8
2.81 -9999. 269.39 77.76 0.9 1.5 65.8
3.81 -9999. 270.3 73.57 1.02 1.6 72.1
4.81 -9999. 270.86 70. 1.14 1.66 78.1
5.81 -9999. 271.23 67.49 1.26 1.72 85.1
6.81 -9999. 271.7 65.76 1.39 1.79 92.4
7.81 -9999. 272.1 64.18 1.53 1.86 98.9
8.81 -9999. 272.37 62.6 1.67 1.92 105.6

In order now to read in the desired variables we will drop the first 40 lines and
package up the Time, Temperature, RH, Height, Pressure, Mixing Ratio.
Fortunately, the RS92 has the same ASCII format so the read statements are
similar.

In[]:= {timeRS41, tempKRS41, rhRS41, heightRS41, pressRS41, mixratRS41} =

Transpose[Drop[Import[fileRS41], 40]][[{1, 3, 4, 7, 8, 10}]];

{timeRS92, tempKRS92, rhRS92, heightRS92, pressRS92, mixratRS92} =

Transpose[Drop[Import[fileRS92], 40]][[{1, 3, 4, 7, 8, 10}]];

PBL2020WarmUpExercises.nb 13

The reprocessed RS92 data that GRUAN produces is (thankfully) provided in a
netCDF format. So you can interrogate this file like the hdf file in Exercise 1 and
find out what the different variables are.

In[]:= Import[fileGRUAN]

Out[]= {time, press, temp, rh, wdir, wspeed, geopot, lon, lat, alt, u, v,

FP, WVMR, asc, SWrad, u_SWrad, cor_temp, u_cor_temp, u_std_temp, u_temp,

u_alt, u_press, res_rh, u_std_rh, cor_rh, u_cor_rh, u_rh, u_wdir, u_wspeed}

More information is available for each of the variables indicated above by
interrogating the “Annotations” as follows. From this we see the units of time,
pressure, temperature, etc as well as descriptions of the quantities.

In[]:= TableForm[Import[fileGRUAN, "Annotations"], TableSpacing → {0, 0.5}]

Out[]//TableForm=

standard_name → time units → seconds since 2020-01-23T06
standard_name → air_pressure units → hPa
standard_name → air_temperature units → K
standard_name → relative_humidity units → 1
standard_name → wind_from_direction units → degree
standard_name → wind_speed units → m s-1
standard_name → geopotential_height units → m
standard_name → longitude units → degree_east
standard_name → latitude units → degree_north
standard_name → altitude units → m
standard_name → eastward_wind units → m s-1
standard_name → northward_wind units → m s-1
units → K long_name → Frostpoint
standard_name → Water_vapor_mixing_ratio units → 1
units → m s-1 long_name → Ascent/Descent Speed
standard_name → short_wave_radiation units → W m-2
standard_name → short_wave_radiation standard_error units → W m-2
standard_name → air_temperature correction units → K
standard_name → air_temperature correlated_uncertainty units → K
standard_name → air_temperature standard_deviation units → K
standard_name → air_temperature standard_error units → K
standard_name → altitude standard_error units → m
standard_name → air_pressure standard_error units → hPa
standard_name → relative_humidity resolution units → s
standard_name → relative_humidity standard_deviation units → 1
standard_name → relative_humidity correction units → 1
standard_name → relative_humidity correlated_uncertainty units → 1
standard_name → relative_humidity standard_error units → 1
standard_name → wind_from_direction standard_error units → degree
standard_name → wind_speed standard_error units → m s-1

Now read the same parameters from the GRUAN processed file as were read
from the original RS92 file

In[]:= {timeRS92G, tempKRS92G, rhRS92G, heightRS92G, pressRS92G, mixratRS92G} =

Import[fileGRUAN, {"Datasets", {"time", "temp", "rh", "geopot", "press", "WVMR"}}];

So we have the data from all three sonde files and can start with some
comparisons. The best independent variable to use for a multi-sonde
comparison where the instruments are on the same balloon is time (instead of
height). The reason for this is that clocks are extremely precise whereas height

14 PBL2020WarmUpExercises.nb

calculations can be subject to pressure or GPS errors. So to compare the RH
measurements of the RS41 and RS92 that were on the same balloon, we will do
so as a function of time.

In[]:= ListPlot[{Thread[{rhRS41, timeRS41}], Thread[{rhRS92, timeRS92}]},

BaseStyle → {14, FontFamily → "Helvetica"}, Frame -> True,

FrameLabel → {"RH (%)", "Time (s)"}, Joined → True,

GridLines → Automatic, PlotLegends → Placed[{"RS41", "RS92"}, {0.8, 0.8}]]

Out[]=

RS41

RS92

0 20 40 60

0

1000

2000

3000

4000

5000

RH (%)

T
im
e
(s
)

PBL2020WarmUpExercises.nb 15

The humidity sensor of the RS41 has much faster response than that of the
RS92. Above you can see that the RS41 shows significant departures from the
RS92 in regions of rapidly changing values in RH due to this faster response.
Now create a scatter plot to look at how the RH measurements compare over
the range of RH. To form the ordered pairs, make a linear interpolation function
for the RS92 profile and then evaluate at the timebase of the RS41. You can use
these ordered pairs to determine the linear best fit function. The significant
departures from the best fit line shown below are no doubt due to the regions
of discrepancy shown above where RH is changing rapidly.

In[]:= lm = LinearModelFit[pairsRH = Thread[{rhRS41,

Interpolation[Thread[{timeRS92, rhRS92}], InterpolationOrder → 1][timeRS41]}], x, x];

Show[Plot[lm[x], {x, 0, 100}, PlotStyle → Red], ListPlot[pairsRH], Frame → True,

GridLines → Automatic, BaseStyle → {14, FontFamily → "Helvetica"},

Frame -> True, FrameLabel → {"RH_RS41(%)", "RH_RS92 (%)"},

Epilog → Inset[Framed[Style[Normal[lm], Red]], Scaled[{0.3, 0.85}]]]

Out[]=

0 20 40 60 80 100

0

20

40

60

80

100

RH_RS41(%)

R
H
_R
S
92

(%
)

0.999489 x + 0.242021

Consider now the calculation of water vapor mixing ratio. This is a derived
quantity from the radiosonde data since the sonde measures RH, temperature
and pressure and not mixing ratio. In their calibration of the radiosondes,
Vaisala uses the Wexler, 1976 and Hyland - Wexler, 1983 formulations of the
saturation vapor pressure over water and ice, respectively (Miloshevich et al.,
2006). So it is best to use these formulations when converting from RH to Mixing
Ratio. Surprisingly, the data files for radiosondes sometimes use other

16 PBL2020WarmUpExercises.nb

formulations that can lead to significant differences.

Now for some equations and formulas...to convert from RH to Mixing Ratio, use
the following:

Water Vapor Mixing Ratio (g/kg) = 10 RH MWw

MWD
 es

P- RH
100 es

where,

RH is in %
MWw

MWD
is the ratio of molecular weights of water vapor and dry air and equal to

approximately 0.62197
es is the saturation vapor pressure of water vapor
P is pressure in hPa or mbarr

To follow the recommendations of Elliott and Gaffen, 1991 and the procedures
used by Vaisala in their calibration (Miloshevich et al., 2006), we use the Wexler,
1976 formulation of the saturation vapor pressure which is one of the choices in
the function SatVaporPressLiq defined below.

In[]:= GetMixRatioWater[{TempC_, PressMB_, RH_}] :=

10 RH SaturationMixingRatioWater2[{TempC, PressMB, RH}](* output in gkg *)

In[]:= SaturationMixingRatioWater2[{TempC_, PressMB_, RHLiqPercent_}] := Module{SatVapPress},

SatVapPress = SatVaporPressLiq[TempC, "Wexler"];

0.62197 SatVapPress  PressMB -
RHLiqPercent

100
SatVapPress

(* output in units of kgkg *)



PBL2020WarmUpExercises.nb 17

In[]:= SatVaporPressLiq[TempC_, Choice_] := Module{TempK},

(* output in hPa i.e. mb *)

TempK = TempC + 273.15;

SwitchChoice,

"GoffGratch", 10^-7.90298 373.16  TempK - 1 +

5.02808 Log10, 373.16  TempK - 1.3816 × 10-7 1011.344 (1-TempK/373.16) - 1 +

8.1328 × 10-3 10-3.49149 (373.16/TempK -1) - 1 + Log[10, 1013.246],

"HylandWexler", Exp-0.58002206 × 104  TempK + 0.13914993 × 101 -

0.48640239 × 10-1 TempK + 0.41764768 × 10-4 TempK2 -

0.14452093 × 10-7 TempK3 + 0.65459673 × 101 Log[TempK] 10-2,

"Wexler", Exp-2.9912729 × 103 TempK-2 - 6.0170128 × 103 TempK-1 + 1.887643854 × 101 -

2.8354721 × 10-2 TempK + 1.7838301 × 10-5 TempK2 - 8.4150417 × 10-10 TempK3 +

4.4412543 × 10-13 TempK4 + 2.858487 Log[TempK] 10.  1000.,

"MagnusTeten", 10^7.5 TempC  TempC + 237.3 + 0.7858,

"Sonntag", Exp-6096.9385  TempK + 16.635794 -

2.711193 × 10-2 TempK + 1.673952 × 10-5 TempK2 + 2.433502 Log[TempK],

"Buck81", 6.1121 Exp17.502 TempC  240.97 + TempC,

"Buck96", 6.1121 Exp18.678 - TempC  234.5 TempC  257.14 + TempC,

"WMO", 10^10.79574 1 - 273.15  TempK

- 5.02800 Log10, TempK  273.15 + 1.50475 × 10-4 1 - 10-8.2969 (TempK/273.15-1) +

0.42873 × 10-3 10-4.769955 (1-273.15/TempK) - 1 + 0.78614,

"MurphyKoop", Exp54.842763 - 6763.22  TempK - 4.21 Log[TempK] +

0.000367 TempK + Tanh0.0415 TempK - 218.8

53.878 - 1331.22  TempK - 9.44523 Log[TempK] + 0.014025 TempK 10-2





18 PBL2020WarmUpExercises.nb

In[]:= SatVaporPressIce[TempC_, Choice_] := Module{TempK},

(* output in hPa i.e. mb *)

TempK = TempC + 273.15;

SwitchChoice,

"GoffGratch", 10^-9.09718 273.15  TempK - 1 -

3.56654 Log10, 273.15  TempK + 0.876793 1 - TempK  273.15 + Log[10, 6.1071],

"HylandWexler", Exp-0.56745359 × 104  TempK + 0.63925247 × 101 -

0.96778430 × 10-2 TempK + 0.62215701 × 10-6 TempK2 + 0.20747825 × 10-8 TempK3 -

0.94840240 × 10-12 TempK4 + 0.41635019 × 101 Log[TempK] 10-2,

"MagnusTeten", 10^9.5 TempC  TempC + 265.5 + 0.7858,

"Buck81", 6.1115 Exp22.452 TempC  272.55 + TempC,

"Buck96", 6.1115 Exp23.036 - TempC  333.7 TempC  279.82 + TempC,

"WMO", 10^-9.09685 273.15  TempK - 1

- 3.56654 Log10, 273.15  TempK + 0.87682 1 - TempK  273.15 + 0.78614,

"MurphyKoop",

Exp9.550426 - 5723.265  TempK + 3.53068 Log[TempK] - 0.00728332 TempK  10-2





Enrichment Excursion: Before moving on, let' s have a look at all those
different formulations of saturation vapor pressure over both water and ice.
Below we plot the ratio of each of the liquid formulations with that of the
GoffGratch equation.

In[]:= TheseTemps = Table[x, {x, -100, 50}];

ggVals = SatVaporPressLiq[#, "GoffGratch"] & /@ TheseTemps;

ListPlot

ThreadTheseTemps, SatVaporPressLiq[#, "HylandWexler"] & /@ TheseTemps  ggVals,

ThreadTheseTemps, SatVaporPressLiq[#, "Wexler"] & /@ TheseTemps  ggVals,

ThreadTheseTemps, SatVaporPressLiq[#, "MagnusTeten"] & /@ TheseTemps  ggVals,

ThreadTheseTemps, SatVaporPressLiq[#, "Sonntag"] & /@ TheseTemps  ggVals,

ThreadTheseTemps, SatVaporPressLiq[#, "Buck81"] & /@ TheseTemps  ggVals,

ThreadTheseTemps, SatVaporPressLiq[#, "Buck96"] & /@ TheseTemps  ggVals,

ThreadTheseTemps, SatVaporPressLiq[#, "WMO"] & /@ TheseTemps  ggVals,

ThreadTheseTemps, SatVaporPressLiq[#, "MurphyKoop"] & /@ TheseTemps  ggVals,

Frame → True, GridLines → Automatic, PlotLegends → {"HylandWexler", "Wexler",

"MagnusTeten", "Sonntag", "Buck81", "Buck96", "WMO", "MurphyKoop"},

PlotRange → {{-100, 0}, {0.8, 1.2}}, Joined → True,

BaseStyle → {12, FontFamily → "Helvetica"},

FrameLabel → {"Temp (C)", "Ratio with GoffGratch"},

Epilog → Inset[Framed[Style["Saturation Vapor Pressure Over Water", "Helvetica"]],

Scaled[{0.6, 0.85}]]

PBL2020WarmUpExercises.nb 19

Out[]=

-100 -80 -60 -40 -20 0
0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Temp (C)

R
at
io
w
ith
G
of
fG
ra
tc
h

Saturation Vapor Pressure Over Water HylandWexler

Wexler

MagnusTeten

Sonntag

Buck81

Buck96

WMO

MurphyKoop

Note how the curves above are in very good agreement near the freezing point
of water but at lower temperatures diverge very noticeably. A significant reason
for this is that the homogeneous nucleation point of water is about - 37 C so the
concept of a saturation vapor pressure over liquid water at such cold
temperatures is not really physical and thus cannot be measured in the lab.
Nonetheless, the convention for reporting RH from radiosondes is to use RH
over water even at these very cold temperatures. By contrast, look at various
formulations of RH over ice shown below.

In[]:= ggValsIce = SatVaporPressIce[#, "GoffGratch"] & /@ TheseTemps;

ListPlot

ThreadTheseTemps, SatVaporPressIce[#, "HylandWexler"] & /@ TheseTemps  ggValsIce,

ThreadTheseTemps, SatVaporPressIce[#, "Wexler"] & /@ TheseTemps  ggValsIce,

ThreadTheseTemps, SatVaporPressIce[#, "MagnusTeten"] & /@ TheseTemps  ggValsIce,

ThreadTheseTemps, SatVaporPressIce[#, "Buck81"] & /@ TheseTemps  ggValsIce,

ThreadTheseTemps, SatVaporPressIce[#, "Buck96"] & /@ TheseTemps  ggValsIce,

ThreadTheseTemps, SatVaporPressIce[#, "WMO"] & /@ TheseTemps  ggValsIce,

ThreadTheseTemps, SatVaporPressIce[#, "MurphyKoop"] & /@ TheseTemps  ggValsIce,

Frame → True, GridLines → Automatic, PlotLegends →

{"HylandWexler", "Wexler", "MagnusTeten", "Buck81", "Buck96", "WMO", "MurphyKoop"},

PlotRange → {{-100, 0}, {0.8, 1.2}}, Joined → True,

BaseStyle → {12, FontFamily → "Helvetica"},

FrameLabel → {"Temp (C)", "Ratio with GoffGratch"},

Epilog → Inset[Framed[Style["Saturation Vapor Pressure Over Ice", "Helvetica"]],

Scaled[{0.6, 0.85}]]

20 PBL2020WarmUpExercises.nb

Out[]=

-100 -80 -60 -40 -20 0
0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Temp (C)

R
at
io
w
ith
G
of
fG
ra
tc
h

Saturation Vapor Pressure Over Ice

HylandWexler

Wexler

MagnusTeten

Buck81

Buck96

WMO

MurphyKoop

PBL2020WarmUpExercises.nb 21

Because of generally much better agreement of these formulations of vapor
pressure over ice versus temperatures below 0 (except Magnus Teeten), which
result from actual laboratory measurements, some, including Miloshevich et
al., 2006, have recommended that radiosonde datafiles also report RH over ice
in addition to RH over water. Such reporting could eliminate most of the
discrepancies due to the choice of vapor pressure formulation, however those
suggestions have not yet been adopted by the community.

Now let' s calculate the mixing ratio from the T, P, RH measured by the RS92
sonde using the Wexler, 1976 formulation of the vapor pressure and compare
with the mixing ratio reported in the RS92 sonde data file.

In[]:= ListLogLinearPlotThread[{mixratRS92, heightRS92}],

ThreadwexRS92 = GetMixRatioWater[{#[[1]] - 273.15, #[[2]], #[[3]]}] & /@

Thread[{tempKRS92, pressRS92, rhRS92}], heightRS92,

PlotRange → All, Frame → True, BaseStyle → {12, FontFamily → "Helvetica"},

Joined → True, GridLines → Automatic,

PlotLegends → Placed[{"RS92-Ori", "RS92-Wex"}, Scaled[{0.75, 0.75}]]

22 PBL2020WarmUpExercises.nb

Out[]=

RS92-Ori

RS92-Wex

0.001 0.005 0.010 0.050 0.100 0.500

0

5000

10000

15000

20000

25000

30000

PBL2020WarmUpExercises.nb 23

Discrepancies exist and are most evident around the very dry, cold tropopause
at ~15 km indicating that Vaisala may have used a different formulation either
for vapor pressure or for the conversion from RH to mixing ratio.

Exercise for the student!! Play around with the different vapor pressure
formulations and see if you can resolve the discrepancies shown in the plot
above. You may want to plot the data up differently to illustrate the
discrepancy between the two mixing ratio calculations.

Finally let' s compare the normal RS92 file and the one generated using the
GRUAN data processing. The largest differences are in the water vapor field
(although other corrections are applied). So let' s compare the RH fields.

In[]:= ListLogLinearPlot

ThreadrhRS92, heightRS92  1000, Thread100 rhRS92G, heightRS92G  1000,

PlotRange → All, Frame → True, FrameLabel → {"RH(%)", "Altitude (km)"},

BaseStyle → {12, FontFamily → "Helvetica"}, Joined → True, GridLines → Automatic,

PlotLegends → Placed[{"RS92", "RS92-G"}, Scaled[{0.75, 0.75}]]

Out[]=

RS92

RS92-G

0.5 1 5 10 50

0

5

10

15

20

25

30

RH(%)

A
lti
tu
de

(k
m
)

The correction for the known dry bias in the RS92 is evident from a comparison
of GRUAN - processed and original radiosonde data and can be seen perhaps

24 PBL2020WarmUpExercises.nb

most noticeably at an altitude of approximately 10 km.

Exercise for the student! Present the data in different ways to quantify the
magnitude of the dry bias correction. How much is the correction a function of
RH? How much is it a function of temperature?

References
◼ Bolton, D., The computation of equivalent potential temperature, Monthly Weather Review, 108,

1046-1053, 1980.

◼ Buck, A. L., New equations for computing vapor pressure and enhancement factor, J. Appl.
Meteorol., 20, 1527-1532, 1981.

◼ Buck Research Manuals, 1996

◼ Detwiler, A., Extrapolation of the Goff-Gratch formula for vapor pressure over liquid water at
temperatures below 0°C, J. Appl. Meteorol., 22, 503, 1983.

◼ Elliott,W. P., and D. J. Gaffen (1991), On the utility of radiosonde humidity archives for climate
studies, Bull. Am. Meteorol. Soc., 72, 1507–1520.

◼ Elliott, W. P. and D. J. Gaffen, Effects of conversion algorithms on reported upper air dewpoint
depressions, Bull. Am. Meteorol. Soc., 74, 1323-1325, 1993.

◼ Fukuta, N. and C. M. Gramada, Vapor pressure measurement of supercooled water, J. Atmos. Sci., 60,
1871-1875, 2003.

◼ Gibbins, C. J., A survey and comparison of relationships for the determination of the saturation
vapour pressure over plane surfaces of pure water and of pure ice, Annales Geophys., 8, 859-886,
1990.

◼ Goff, J. A., and S. Gratch, Low-pressure properties of water from -160 to 212 F, in Transactions of the
American society of heating and ventilating engineers, pp 95-122, presented at the 52nd annual
meeting of the American society of heating and ventilating engineers, New York, 1946.

◼ Goff, J. A. Saturation pressure of water on the new Kelvin temperature scale, Transactions of the
American society of heating and ventilating engineers, pp 347-354, presented at the semi-annual
meeting of the American society of heating and ventilating engineers, Murray Bay, Que. Canada,
1957.

◼ Hardy, B., 1998, ITS-90 Formulations for Vapor Pressure, Frostpoint Temperature, Dewpoint
Temperature, and Enhancement Factors in the Range –100 to +100 °C, The Proceedings of the Third
International Symposium on Humidity & Moisture, London, England

◼ Hyland, R. W., and A. Wexler, Formulations for the thermodynamic properties of the saturated
phases of H2O from 173.15 K to 473.15 K, ASHRAE Trans., 2A, 500– 519 (1983).

PBL2020WarmUpExercises.nb 25

◼ Marti, J. and K Mauersberger, A survey and new measurements of ice vapor pressure at temperatures
between 170 and 250 K, GRL 20, 363-366, 1993

◼ Miloshevich, L.M., H.Voemel, D. Whiteman, B. Lesht, F.J. Schmidlin, and F. Russo (2006), Absolute
accuracy of water vapor measurements from six operational radiosonde types launched during
AWEX - G and implications for AIRS validation, J.Geophys.Res., 111, doi : 10.1029/2005 JD006083
(2006)

◼ Miloshevich LM, Vomel H, Whiteman DN, T. Leblanc, Accuracy assessment and correction of Vaisala
RS92 radiosonde water vapor measurements, J. Geophys. Res, Vol. 114, D11305 (2009)

◼ Murphy, D. M. and T. Koop, Review of the vapour pressures of ice and supercooled water for
atmospheric applications, Quart. J. Royal Met. Soc, 131, 1539-1565, 2005.

◼ Murray, F. W., On the computation of saturation vapor pressure, J. Appl. Meteorol., 6, 203-204, 1967.

◼ Wexler, A. (1976), Vapor pressure formulation for water in range 0 to 100°C: A revision, ., Res. Natl.
Bur. Stand. U.S., Sect. A, 80, 775– 785.

◼ Smithsonian Met. Tables, 5th ed., pp. 350, 1984.

◼ Sonntag, D., Advancements in the field of hygrometry, Meteorol. Z., N. F., 3, 51-66, 1994.

◼ Veselovskii, I, D. N. Whiteman, A. Kolgotin, E. Andrews, M. Korenskii, Retrieval of Aerosol Physical
Properties Under Varying Relative Humidity Conditions, J. Atmos. Ocean. Tech., (2009)

◼ Wagner W. and A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary
water substance for general and scientific use, J. Phys. Chem. Ref. Data, 31, 387-535, 2002.

◼ Wexler, A., Vapor Pressure Formulation for Water in Range 0 to 100°C. A Revision, Journal of
Research of the National Bureau of Standards, 80A, 775-785, 1976.

◼ World Meteorological Organization, Technical Regulations, Basic Documents No. 2, Volume I -
General meteorological standards and recommended practices, Appendix A, WMO-No. 49, Geneva
2011, updated 2012.

◼ World Meteorological Organization, Guide to Meteorological Instruments and Methods of
Observation, Appendix 4B, WMO-No. 8 (CIMO Guide), Geneva 2008.

26 PBL2020WarmUpExercises.nb

